DocumentCode :
7606
Title :
A Methodology for Direct and Indirect Discrimination Prevention in Data Mining
Author :
Hajian, S. ; Domingo-Ferrer, J.
Author_Institution :
Dept. of Comput. Eng. & Math., Univ. Rovira i Virgili, Tarragona, Spain
Volume :
25
Issue :
7
fYear :
2013
fDate :
Jul-13
Firstpage :
1445
Lastpage :
1459
Abstract :
Data mining is an increasingly important technology for extracting useful knowledge hidden in large collections of data. There are, however, negative social perceptions about data mining, among which potential privacy invasion and potential discrimination. The latter consists of unfairly treating people on the basis of their belonging to a specific group. Automated data collection and data mining techniques such as classification rule mining have paved the way to making automated decisions, like loan granting/denial, insurance premium computation, etc. If the training data sets are biased in what regards discriminatory (sensitive) attributes like gender, race, religion, etc., discriminatory decisions may ensue. For this reason, anti-discrimination techniques including discrimination discovery and prevention have been introduced in data mining. Discrimination can be either direct or indirect. Direct discrimination occurs when decisions are made based on sensitive attributes. Indirect discrimination occurs when decisions are made based on nonsensitive attributes which are strongly correlated with biased sensitive ones. In this paper, we tackle discrimination prevention in data mining and propose new techniques applicable for direct or indirect discrimination prevention individually or both at the same time. We discuss how to clean training data sets and outsourced data sets in such a way that direct and/or indirect discriminatory decision rules are converted to legitimate (nondiscriminatory) classification rules. We also propose new metrics to evaluate the utility of the proposed approaches and we compare these approaches. The experimental evaluations demonstrate that the proposed techniques are effective at removing direct and/or indirect discrimination biases in the original data set while preserving data quality.
Keywords :
data mining; classification rule mining; data collection; data mining; direct discrimination prevention; discrimination discovery; indirect discrimination prevention; negative social perceptions; nonsensitive attributes; potential discrimination; potential privacy invasion; rule generalization; rule protection; Data engineering; Data mining; Itemsets; Knowledge engineering; Training; Training data; Antidiscrimination; data mining; direct and indirect discrimination prevention; privacy; rule generalization; rule protection;
fLanguage :
English
Journal_Title :
Knowledge and Data Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1041-4347
Type :
jour
DOI :
10.1109/TKDE.2012.72
Filename :
6175897
Link To Document :
بازگشت