• DocumentCode
    760732
  • Title

    Minimum bias priors for estimating parameters of additive terms in state-space models

  • Author

    Hochwald, Bertrand ; Nehorai, Arye

  • Author_Institution
    Dept. of Electr. Eng., Yale Univ., New Haven, CT, USA
  • Volume
    40
  • Issue
    4
  • fYear
    1995
  • fDate
    4/1/1995 12:00:00 AM
  • Firstpage
    684
  • Lastpage
    693
  • Abstract
    We treat the problem of estimating parameters of additive terms, sometimes called bias terms, in state-space models. We consider models that depend linearly on the state but possibly nonlinearly on the parameters, where both the state and observation are corrupted by additive noise. A prior density for the parameters is introduced that, when combined with the likelihood function to form a posterior density, minimizes the bias of the posterior mean. The result is a useful prior based on ignorance. Two examples and simulations illustrate the use of the prior
  • Keywords
    minimisation; noise; parameter estimation; probability; state-space methods; additive noise; additive terms; bias terms; likelihood function; minimum bias priors; observation; parameter estimation; state-space models; Additive noise; Density functional theory; Equations; Estimation theory; Helium; Kalman filters; Parameter estimation; Recursive estimation; Sensor systems; State estimation;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/9.376109
  • Filename
    376109