DocumentCode :
763165
Title :
Direct solution method for finite element analysis using Hopfield neural network
Author :
Yamashita, Hideo ; Kowata, Norio ; Cingoski, V. ; Kaneda, Kazufumi
Author_Institution :
Fac. of Eng., Hiroshima Univ., Japan
Volume :
31
Issue :
3
fYear :
1995
fDate :
5/1/1995 12:00:00 AM
Firstpage :
1964
Lastpage :
1967
Abstract :
One property of the Hopfield neural network is the monotonous minimization of energy as time proceeds. In this paper, this property is applied to minimize the energy functional obtained by ordinary finite element analysis. The mathematical representation and correlation between finite element and neural network calculus are presented. The selection of the sigmoid function and its influence on the iteration process is discussed. The obtained results using the proposed method show excellent agreement with theoretical solutions
Keywords :
Hopfield neural nets; electromagnetic fields; finite element analysis; iterative methods; EM field problems; Hopfield neural network; energy functional; finite element analysis; iteration process; mathematical representation; monotonous minimization; neural network calculus; sigmoid function; Artificial neural networks; Biological neural networks; Calculus; Electromagnetic fields; Electrostatics; Finite element methods; Hopfield neural networks; Neural networks; Neurons; Power engineering and energy;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/20.376426
Filename :
376426
Link To Document :
بازگشت