DocumentCode :
763485
Title :
Multichannel active noise equalization of interior noise
Author :
Gonzalez, Alberto ; De Diego, María ; Ferrer, Miguel ; Pinero, Gema
Author_Institution :
Dept. of Comunications, Univ. Politecnica de Valencia, Spain
Volume :
14
Issue :
1
fYear :
2006
Firstpage :
110
Lastpage :
122
Abstract :
An algorithmic variant of the conventional active noise equalizer (ANE), which independently controls some given frequencies of the primary signal, has been developed and extended to the multichannel case. The modified version of the ANE is named common-error multiple-frequency ANE. A detailed analysis of both multichannel equalizers has been carried out. From a convergence analysis in the frequency-domain, the significance of transducer locations in the behavior of a practical system can be predicted through the matrix of secondary path responses at each frequency. The ANEs steady-state transfer functions from the primary input signal to the noise output have also been developed and compared for different parameter settings and for accurate and inaccurate secondary path estimation. Furthermore, the multichannel extension of both equalizers has been implemented in a real-time active system inside a listening room for multifrequency noise. Useful-size zones of equalization have been binaurally measured by using a head and torso simulator. It was found that the common-error multiple-frequency ANE performs better than the conventional equalizer because it achieves a saving in computational complexity and has smaller overshoot. It can also be implemented in a real controller more easily than the conventional ANE and without showing meaningful differences in the practical results provided.
Keywords :
active noise control; equalisers; interference suppression; matrix algebra; telecommunication channels; transfer functions; computational complexity; convergence analysis; interior noise; multichannel active noise equalization; multichannel equalizers; secondary path estimation; steady-state transfer functions; Active noise reduction; Computational modeling; Convergence; Equalizers; Frequency domain analysis; Real time systems; Steady-state; Torso; Transducers; Transfer functions; Local active control; multichannel adaptive filtering; sound field equalization;
fLanguage :
English
Journal_Title :
Audio, Speech, and Language Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1558-7916
Type :
jour
DOI :
10.1109/TSA.2005.853204
Filename :
1561269
Link To Document :
بازگشت