DocumentCode :
763502
Title :
Efficient mixed-spectrum estimation with applications to target feature extraction
Author :
Li, Jim ; Stoica, Petre
Author_Institution :
Dept. of Electr. Eng., Florida Univ., Gainesville, FL, USA
Volume :
44
Issue :
2
fYear :
1996
fDate :
2/1/1996 12:00:00 AM
Firstpage :
281
Lastpage :
295
Abstract :
We present a decoupled parameter estimation (DPE) algorithm for estimating sinusoidal parameters from both 1-D and 2-D data sequences corrupted by autoregressive (AR) noise. In the first step of the DPE algorithm, we use a relaxation (RELAX) algorithm that requires simple fast Fourier transforms (FFTs) to obtain the estimates of the sinusoidal parameters. We describe how the RELAX algorithm may be used to extract radar target features from both 1-D and 2-D data sequences. In the second step of the DPE algorithm, a linear least-squares approach is used to estimate the AR noise parameters. The DPE algorithm is both conceptually and computationally simple. The algorithm not only provides excellent estimation performance under the model assumptions, in which case the estimates obtained with the DPE algorithm are asymptotically statistically efficient, but is also robust to mismodeling errors
Keywords :
autoregressive processes; estimation theory; fast Fourier transforms; feature extraction; least squares approximations; noise; parameter estimation; radar imaging; spectral analysis; synthetic aperture radar; 1D data sequences; 2D data sequences; AR noise parameters; DPE algorithm; FFT; RELAX algorithm; SAR imaging; asymptotically statistically efficient algorithm; autoregressive noise; decoupled parameter estimation algorithm; estimation performance; fast Fourier transforms; linear least-squares approach; mismodeling errors; mixed-spectrum estimation; model assumptions; radar target features; relaxation algorithm; sinusoidal parameters estimation; target feature extraction; Additive noise; Covariance matrix; Data mining; Data models; Fast Fourier transforms; Feature extraction; Noise robustness; Numerical simulation; Parameter estimation; Radar;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.485924
Filename :
485924
Link To Document :
بازگشت