DocumentCode
766009
Title
Parameter estimation of state space models by recurrent neural networks
Author
Raol, J.R.
Author_Institution
Flight Mech. & Control Div., Nat. Aeronaut. Lab., Bangalore, India
Volume
142
Issue
2
fYear
1995
fDate
3/1/1995 12:00:00 AM
Firstpage
114
Lastpage
118
Abstract
Four variants of recurrent neural networks (RNNs) are studied. The similarities and contradistinction of these formulations are brought out from the view point of their applicability to parameter estimation in dynamic systems. The trajectory matching algorithms are also given. A recursive information processing scheme within the structure of a Hopfield neural network for parameter estimation is presented. Numerical simulation results for nonrecursive and recursive schemes are given
Keywords
parameter estimation; recurrent neural nets; state-space methods; Hopfield neural network; dynamic systems; nonrecursive schemes; parameter estimation; recurrent neural networks; recursive information processing scheme; recursive schemes; state space models; trajectory matching algorithms;
fLanguage
English
Journal_Title
Control Theory and Applications, IEE Proceedings -
Publisher
iet
ISSN
1350-2379
Type
jour
DOI
10.1049/ip-cta:19951733
Filename
376960
Link To Document