DocumentCode :
766009
Title :
Parameter estimation of state space models by recurrent neural networks
Author :
Raol, J.R.
Author_Institution :
Flight Mech. & Control Div., Nat. Aeronaut. Lab., Bangalore, India
Volume :
142
Issue :
2
fYear :
1995
fDate :
3/1/1995 12:00:00 AM
Firstpage :
114
Lastpage :
118
Abstract :
Four variants of recurrent neural networks (RNNs) are studied. The similarities and contradistinction of these formulations are brought out from the view point of their applicability to parameter estimation in dynamic systems. The trajectory matching algorithms are also given. A recursive information processing scheme within the structure of a Hopfield neural network for parameter estimation is presented. Numerical simulation results for nonrecursive and recursive schemes are given
Keywords :
parameter estimation; recurrent neural nets; state-space methods; Hopfield neural network; dynamic systems; nonrecursive schemes; parameter estimation; recurrent neural networks; recursive information processing scheme; recursive schemes; state space models; trajectory matching algorithms;
fLanguage :
English
Journal_Title :
Control Theory and Applications, IEE Proceedings -
Publisher :
iet
ISSN :
1350-2379
Type :
jour
DOI :
10.1049/ip-cta:19951733
Filename :
376960
Link To Document :
بازگشت