• DocumentCode
    766009
  • Title

    Parameter estimation of state space models by recurrent neural networks

  • Author

    Raol, J.R.

  • Author_Institution
    Flight Mech. & Control Div., Nat. Aeronaut. Lab., Bangalore, India
  • Volume
    142
  • Issue
    2
  • fYear
    1995
  • fDate
    3/1/1995 12:00:00 AM
  • Firstpage
    114
  • Lastpage
    118
  • Abstract
    Four variants of recurrent neural networks (RNNs) are studied. The similarities and contradistinction of these formulations are brought out from the view point of their applicability to parameter estimation in dynamic systems. The trajectory matching algorithms are also given. A recursive information processing scheme within the structure of a Hopfield neural network for parameter estimation is presented. Numerical simulation results for nonrecursive and recursive schemes are given
  • Keywords
    parameter estimation; recurrent neural nets; state-space methods; Hopfield neural network; dynamic systems; nonrecursive schemes; parameter estimation; recurrent neural networks; recursive information processing scheme; recursive schemes; state space models; trajectory matching algorithms;
  • fLanguage
    English
  • Journal_Title
    Control Theory and Applications, IEE Proceedings -
  • Publisher
    iet
  • ISSN
    1350-2379
  • Type

    jour

  • DOI
    10.1049/ip-cta:19951733
  • Filename
    376960