Title :
Parameter estimation of state space models by recurrent neural networks
Author_Institution :
Flight Mech. & Control Div., Nat. Aeronaut. Lab., Bangalore, India
fDate :
3/1/1995 12:00:00 AM
Abstract :
Four variants of recurrent neural networks (RNNs) are studied. The similarities and contradistinction of these formulations are brought out from the view point of their applicability to parameter estimation in dynamic systems. The trajectory matching algorithms are also given. A recursive information processing scheme within the structure of a Hopfield neural network for parameter estimation is presented. Numerical simulation results for nonrecursive and recursive schemes are given
Keywords :
parameter estimation; recurrent neural nets; state-space methods; Hopfield neural network; dynamic systems; nonrecursive schemes; parameter estimation; recurrent neural networks; recursive information processing scheme; recursive schemes; state space models; trajectory matching algorithms;
Journal_Title :
Control Theory and Applications, IEE Proceedings -
DOI :
10.1049/ip-cta:19951733