DocumentCode
767008
Title
Minimax MSE estimation of deterministic parameters with noise covariance uncertainties
Author
Eldar, Yonina C.
Author_Institution
TechnionIsrael Inst. of Technol., Haifa, Israel
Volume
54
Issue
1
fYear
2006
Firstpage
138
Lastpage
145
Abstract
In this paper, a minimax mean-squared error (MSE) estimator is developed for estimating an unknown deterministic parameter vector in a linear model, subject to noise covariance uncertainties. The estimator is designed to minimize the worst-case MSE across all norm-bounded parameter vectors, and all noise covariance matrices, in a given region of uncertainty. The minimax estimator is shown to have the same form as the estimator that minimizes the worst-case MSE over all norm-bounded vectors for a least-favorable choice of the noise covariance matrix. An example demonstrating the performance advantage of the minimax MSE approach over the least-squares and weighted least-squares methods is presented.
Keywords
covariance matrices; mean square error methods; minimax techniques; signal processing; covariance matrices; deterministic parameters; minimax MSE estimation; minimax mean-squared error estimation; noise covariance uncertainties; weighted least-squares methods; Covariance matrix; Error analysis; Estimation error; Helium; Minimax techniques; Noise robustness; Parameter estimation; Signal processing; Uncertainty; Vectors; Covariance uncertainty; minimax estimation; robust estimation;
fLanguage
English
Journal_Title
Signal Processing, IEEE Transactions on
Publisher
ieee
ISSN
1053-587X
Type
jour
DOI
10.1109/TSP.2005.861086
Filename
1561582
Link To Document