• DocumentCode
    767008
  • Title

    Minimax MSE estimation of deterministic parameters with noise covariance uncertainties

  • Author

    Eldar, Yonina C.

  • Author_Institution
    TechnionIsrael Inst. of Technol., Haifa, Israel
  • Volume
    54
  • Issue
    1
  • fYear
    2006
  • Firstpage
    138
  • Lastpage
    145
  • Abstract
    In this paper, a minimax mean-squared error (MSE) estimator is developed for estimating an unknown deterministic parameter vector in a linear model, subject to noise covariance uncertainties. The estimator is designed to minimize the worst-case MSE across all norm-bounded parameter vectors, and all noise covariance matrices, in a given region of uncertainty. The minimax estimator is shown to have the same form as the estimator that minimizes the worst-case MSE over all norm-bounded vectors for a least-favorable choice of the noise covariance matrix. An example demonstrating the performance advantage of the minimax MSE approach over the least-squares and weighted least-squares methods is presented.
  • Keywords
    covariance matrices; mean square error methods; minimax techniques; signal processing; covariance matrices; deterministic parameters; minimax MSE estimation; minimax mean-squared error estimation; noise covariance uncertainties; weighted least-squares methods; Covariance matrix; Error analysis; Estimation error; Helium; Minimax techniques; Noise robustness; Parameter estimation; Signal processing; Uncertainty; Vectors; Covariance uncertainty; minimax estimation; robust estimation;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2005.861086
  • Filename
    1561582