• DocumentCode
    768231
  • Title

    Improved generalization of MCE parameter estimation with application to speech recognition

  • Author

    Purnell, Darryl William ; Botha, Elizabeth C.

  • Author_Institution
    Dept. of Electr., Electron. & Comput. Eng., Pretoria Univ., South Africa
  • Volume
    10
  • Issue
    4
  • fYear
    2002
  • fDate
    5/1/2002 12:00:00 AM
  • Firstpage
    232
  • Lastpage
    239
  • Abstract
    Discriminative training of hidden Markov models (HMMs) using minimum classification error training (MCE) has been shown to work well for certain speech recognition applications. MCE is, however, somewhat prone to overspecialization. This study investigates various techniques which improve performance and generalization of the MCE algorithm. Improvements of up to 10% in relative error rate on the test set are achieved for the TIMIT dataset
  • Keywords
    error analysis; hidden Markov models; parameter estimation; signal classification; speech recognition; MCE algorithm generalization; MCE parameter estimation; TIMIT dataset; discriminative training; error rate; hidden Markov models; minimum classification error; speech recognition; Acoustic testing; Automatic speech recognition; Error analysis; Error correction; Hidden Markov models; Multi-layer neural network; Neural networks; Parameter estimation; Speech recognition; Viterbi algorithm;
  • fLanguage
    English
  • Journal_Title
    Speech and Audio Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1063-6676
  • Type

    jour

  • DOI
    10.1109/TSA.2002.1011536
  • Filename
    1011536