DocumentCode :
770703
Title :
Fabrication and characterization of micromachined high-frequency tonpilz transducers derived by PZT thick films
Author :
Zhou, Qifa ; Cannata, Jonathan M. ; Meyer, Richard J., Jr. ; Van Tol, David J. ; Tadigadapa, Srinivas ; Hughes, W. Jack ; Shung, K. Kirk ; Trolier-McKinstry, Susan
Author_Institution :
Pennsylvania State Univ., University Park, PA, USA
Volume :
52
Issue :
3
fYear :
2005
fDate :
3/1/2005 12:00:00 AM
Firstpage :
350
Lastpage :
357
Abstract :
Miniaturized tonpilz transducers are potentially useful for ultrasonic imaging in the 10 to 100 MHz frequency range due to their higher efficiency and output capabilities. In this work, 4 to 10-/spl mu/m thick piezoelectric thin films were used as the active element in the construction of miniaturized tonpilz structures. The tonpilz stack consisted of silver/lead zirconate titanate (PZT)/lanthanum nickelate (LaNiO/sub 3/)/silicon on insulator (SOI) substrates. First, conductive LaNiO/sub 3/ thin films, approximately 300 nm in thickness, were grown on SOI substrates by a metalorganic decomposition (MOD) method. The room temperature resistivity of the LaNiO/sub 3/ was 6.5 /spl times/ 10/sup -6/ /spl Omega//spl middot/m. Randomly oriented PZT (52/48) films up to 7-/spl mu/m thick were then deposited using a sol-gel process on the LaNiO/sub 3/-coated SOI substrates. The PZT films with LaNiO/sub 3/ bottom electrodes showed good dielectric and ferroelectric properties. The relative dielectric permittivity (at 1 kHz) was about 1030. The remanent polarization of PZT films was larger than 26 /spl mu/C/cm/sup 2/. The effective transverse piezoelectric e/sub 31,f/ coefficient of PZT thick films was about -6.5 C/m/sup 2/ when poled at -75 kV/cm for 15 minutes at room temperature. Enhanced piezoelectric properties were obtained on poling the PZT films at higher temperatures. A silver layer about 40-/spl mu/m thick was prepared by silver powder dispersed in epoxy and deposited onto the PZT film to form the tail mass of the tonpilz structure. The top layers of this wafer were subsequently diced with a saw, and the structure was bonded to a second wafer. The original silicon carrier wafer was polished and etched using a Xenon difluoride (XeF/sub 2/) etching system. The resulting structures showed good piezoelectric activity. This process flow should enable integration of the piezoelectric elements with drive/receive electronics.
Keywords :
MOCVD; electrical resistivity; ferroelectric thin films; lanthanum compounds; lead compounds; micromachining; permittivity; piezoelectric thin films; piezoelectric transducers; remanence; sol-gel processing; 15 min; 20 degC; 4 to 10 mum; LaNiO/sub 3/; PZT; PZT thick films; PbZrO3TiO3; Si; bottom electrodes; conductive thin films; dielectric permittivity; dielectric properties; drive electronics; etching; ferroelectric properties; metalorganic decomposition; micromachined high-frequency tonpilz transducers; miniaturized tonpilz structures; piezoelectric activity; piezoelectric thin films; poling; polishing; process flow; receive electronics; remanent polarization; room temperature resistivity; silicon carrier wafer; sol-gel process; tonpilz stack; transverse piezoelectric coefficient; ultrasonic imaging; Dielectric substrates; Fabrication; Ferroelectric films; Piezoelectric films; Piezoelectric transducers; Silicon on insulator technology; Silver; Temperature; Thick films; Ultrasonic transducers;
fLanguage :
English
Journal_Title :
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-3010
Type :
jour
DOI :
10.1109/TUFFC.2005.1417256
Filename :
1417256
Link To Document :
بازگشت