• DocumentCode
    773227
  • Title

    Information-theoretic approach to unimodal density estimation

  • Author

    Brockett, Patrick L. ; Charnes, A. ; Paick, Kwang H.

  • Author_Institution
    Center for Cybern. Studies, Texas Univ., Austin, TX, USA
  • Volume
    41
  • Issue
    3
  • fYear
    1995
  • fDate
    5/1/1995 12:00:00 AM
  • Firstpage
    824
  • Lastpage
    829
  • Abstract
    Extends the maximum entropy information-theoretic density estimation method to provide a technique which guarantees that the resulting density is unimodal. The method inputs data in the form of moment or quantile constraints and consequently can handle both data-derived and non-data-derived information
  • Keywords
    maximum entropy methods; parameter estimation; probability; data-derived information; information-theoretic approach; maximum entropy; moment constraints; nondata-derived information; probability density distribution; quantile constraints; unimodal density estimation; Bayesian methods; Computer science; Cybernetics; Data engineering; Entropy; Estimation theory; Information analysis; Kernel; Probability density function; Statistical distributions;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.382035
  • Filename
    382035