Title :
Investigation of Motion Guidance With Scooter Cobot and Collaborative Learning
Author :
Boy, Eng Seng ; Burdet, Etienne ; Teo, Chee Leong ; Colgate, James Edward
Author_Institution :
Victoria Junior Coll., Singapore
fDate :
4/1/2007 12:00:00 AM
Abstract :
This paper investigates how collaborative robots (cobots) can assist a human by mechanically constraining motion to software-defined guide paths, and introduces simple and efficient tools to design ergonomic paths. Analysis of the movements of seven subjects with the Scooter cobot reveals significant differences between guided movements (GM) and free movements (FM). While FM requires learning for each novel task, movements in GM are satisfying from the first trial, require little effort, are faster, smoother, and with fewer back and forth corrections than in FM. Operators rely on path guidance to rotate the Scooter and direct it along curved trajectories. While these advantages demonstrate the strength of the cobot concept, they do not show how guide paths should be defined. We introduce tools to enable the cobot and its operator to collaboratively learn ergonomic guide paths and adapt to changes in the environment. By relying on the haptic sensing, vision, and planning capabilities of the human operator, we can avoid equipping the cobot with complex sensor processing. Experiments with human subjects demonstrate the efficiency and complementarity of these guide paths design tools
Keywords :
adaptive systems; control engineering computing; ergonomics; learning (artificial intelligence); man-machine systems; mobile robots; motion control; position control; Scooter cobots; assistive devices; change adaptation; collaborative learning; collaborative robots; ergonomic guide path learning; haptics; human-machine interaction; motion constraints; motion guidance; path guidance; software-defined guide paths; Collaborative software; Collaborative tools; Collaborative work; Ergonomics; Haptic interfaces; Humans; Mechanical engineering; Mobile robots; Motorcycles; Wheels; Assistive devices; effort; ergonomics; haptics; human–machine interaction; motion guidance;
Journal_Title :
Robotics, IEEE Transactions on
DOI :
10.1109/TRO.2006.889488