• DocumentCode
    774608
  • Title

    Identifiability of post-nonlinear mixtures

  • Author

    Achard, Sophie ; Jutten, Christian

  • Author_Institution
    Lab. of Comput. & Modeling, Univ. J. Fourier, Grenoble, France
  • Volume
    12
  • Issue
    5
  • fYear
    2005
  • fDate
    5/1/2005 12:00:00 AM
  • Firstpage
    423
  • Lastpage
    426
  • Abstract
    This letter deals with the resolution of the blind source separation problem using the independent component analysis method in post-nonlinear mixtures. Using the sole hypothesis of the source independence is not obvious to reconstruct the sources in nonlinear mixtures. Here, we prove the identifiability under weak assumptions on the mixture matrix and density sources.
  • Keywords
    blind source separation; independent component analysis; ICA; blind source separation; independent component analysis; post-nonlinear mixtures; Blind source separation; Brain mapping; Computational modeling; Gaussian noise; Image reconstruction; Independent component analysis; Input variables; Jacobian matrices; Laboratories; Source separation; Blind source separation; identifiability; independent component analysis (ICA); post nonlinear mixture;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9908
  • Type

    jour

  • DOI
    10.1109/LSP.2005.845593
  • Filename
    1420356