• DocumentCode
    774805
  • Title

    Nonresonant micromachined gyroscopes with structural mode-decoupling

  • Author

    Acar, Cenk ; Shkel, Andrei M.

  • Author_Institution
    Dept. of Mech. & Aerosp. Eng., Univ. of California, Irvine, CA, USA
  • Volume
    3
  • Issue
    4
  • fYear
    2003
  • Firstpage
    497
  • Lastpage
    506
  • Abstract
    This paper reports a novel four-degrees-of-freedom (DOF) nonresonant micromachined gyroscope design concept that addresses two major MEMS gyroscope design challenges: eliminating the mode-matching requirement and minimizing instability and drift due to mechanical coupling between the drive and sense modes. The proposed approach is based on utilizing dynamical amplification both in the 2-DOF drive-direction oscillator and the 2-DOF sense-direction oscillator, which are structurally decoupled, to achieve large oscillation amplitudes without resonance. The overall 4-DOF dynamical system is composed of three proof masses, where second and third masses form the 2-DOF sense-direction oscillator, and the first mass and the combination of the second and third masses form the 2-DOF drive-direction oscillator. The frequency responses of the drive and sense direction oscillators have two resonant peaks and a flat region between the peaks. The device is nominally operated in the flat regions of the response curves belonging to the drive and sense direction oscillators, where the gain is less sensitive to frequency fluctuations. This is achieved by designing the drive and sense anti-resonance frequencies to match. Consequently, by utilizing dynamical amplification in the decoupled 2-DOF oscillators, increased bandwidth and reduced sensitivity to structural and thermal parameter fluctuations and damping changes are achieved, leading to improved robustness and long-term stability over the operating time of the device.
  • Keywords
    damping; frequency response; gyroscopes; mechanical stability; micromachining; microsensors; oscillators; NWMS gyroscope; damping; decoupled modes; disturbance rejection; drift minimization; drive-direction oscillator; drive/sense antiresonance frequencies; drive/sense modes mechanical coupling; dynamical amplification; four-degrees-of-freedom gyroscope; frequency response; inertial sensors; instability minimization; inter peak flat region; mode-matching; nonresonant micromachined gyroscopes; proof masses; rate sensors; resonant peaks; response curves; sense-direction oscillator; structural mode-decoupling; structural parameter fluctuations; thermal parameter fluctuations; Bandwidth; Damping; Fluctuations; Frequency; Gyroscopes; Micromechanical devices; Oscillators; Resonance; Robust stability; Thermal stability;
  • fLanguage
    English
  • Journal_Title
    Sensors Journal, IEEE
  • Publisher
    ieee
  • ISSN
    1530-437X
  • Type

    jour

  • DOI
    10.1109/JSEN.2003.815799
  • Filename
    1226644