DocumentCode :
77518
Title :
Three-dimensional micromachined silicon-substrate integrated millimetre-wave helical antennas
Author :
Somjit, Nutapong ; Oberhammer, Joachim
Author_Institution :
Microsyst. Technol. Lab., KTH R. Inst. of Technol., Stockholm, Sweden
Volume :
7
Issue :
4
fYear :
2013
fDate :
March 19 2013
Firstpage :
291
Lastpage :
298
Abstract :
This study presents a design study of a novel concept of a three-dimensional (3D) micromachined square helical antenna designed for 75 GHz, which is completely integrated into a semiconductor silicon substrate. In contrast to conventional on-chip integrated antennas which typically are built on top of the substrate surface, the proposed antenna concept utilises, for the first time to the knowledge of the authors, the whole volume of the wafer by building the helical structure inside the substrate, which results in a very area-efficient high-gain radiating element for a substrate-integrated millimeter-wave system. The effective permittivity of the antenna core and the surrounding substrate can be tailor-made by 3D micromachining, for optimising the maximum antenna performance with this design study it was found, that such an antenna concept can achieve a maximum gain of 13.2 dBi, a radiation efficiency of 95.3% at the axial ratio of 0.94 and a half-power beamwidth (HPBW) of smaller than 40°, and a return loss S11 of -22.3 dB at the nominal frequency of 74.5 GHz, with a 15-GHz bandwidth with a reflection coefficient better than -10 dB. A 16-element substrate-integrated helical line array is demonstrated and achieves a maximum gain of 24.2 dBi with a HPBW of 6.3° in the y-z-plane. This study also studies intensively the influences of the surrounding silicon substrate and dielectric-core etching, the matching transition between the helical structure and a coplanar-waveguide feeding, as well as size and geometry of the ground structure.
Keywords :
antenna feeds; coplanar waveguides; elemental semiconductors; helical antennas; impedance matching; micromachining; millimetre wave antenna arrays; silicon; substrate integrated waveguides; 16-element substrate-integrated helical line array; 3D micromachining; Si; antenna core; bandwidth 15 GHz; coplanar waveguide feeding; dielectric core etching; effective permittivity; frequency 74.5 GHz; frequency 75 GHz; ground structure; loss 22.3 dB; matching transition; millimetre wave helical antennas; on-chip integrated antennas; radiating element; reflection coefficient; semiconductor silicon substrate; silicon substrate integrated antennas;
fLanguage :
English
Journal_Title :
Microwaves, Antennas & Propagation, IET
Publisher :
iet
ISSN :
1751-8725
Type :
jour
DOI :
10.1049/iet-map.2012.0345
Filename :
6520146
Link To Document :
بازگشت