DocumentCode
777598
Title
Generalized Model Analysis of Ionizing Radiation Effects in Semiconductor Devices
Author
Raymond, J.P. ; Willis, J.
Author_Institution
Northrop Corporation Ventura Division 1515 Rancho Conejo Boulevard Newbury Park, California
Volume
12
Issue
5
fYear
1965
Firstpage
55
Lastpage
68
Abstract
The necessity of analyzing complex semiconductor device behavior in the radiation environment requires improved analytical methods for accurate representation. The purpose of this discussion is to present work done on the applicability of the Linvill lumped model in a generalized model analysis. The advantages of the lumped model technique include flexibility in detail of device representation (i.e., accuracy), an intimate coupling to the well known radiation effects in bulk semiconductor material, and a unified analytical technique for a wide range of devices. It is shown that the lumped model analysis provides an effective technique for analyzing simple as well as complex devices in a pulsed ionizing radiation environment. Included is the representation of a simple p-n junction diode, a grown-junction transistor; and a planar-diffused transistor with its monolithic-chip substrate and isolation junction. The lumped-model behavior of the diode and grown junction transistor is compared to previously available analytical results. Using measured parameter values, the quantitative lumped-model predictions are compared to experimentally observed transient radiation response. The transistor response is investigated as a function of quiescent emitter current and external base resistance. The effect of the substrate junction in the monolithic-chip transistor is qualitatively presented as a function of the transistor parameters and the substrate proximity.
Keywords
Bipolar transistor circuits; Charge carrier density; Circuit analysis; Ionizing radiation; P-n junctions; Radiation effects; Semiconductor devices; Semiconductor diodes; Semiconductor materials; Substrates;
fLanguage
English
Journal_Title
Nuclear Science, IEEE Transactions on
Publisher
ieee
ISSN
0018-9499
Type
jour
DOI
10.1109/TNS.1965.4323900
Filename
4323900
Link To Document