DocumentCode
777637
Title
On the Performance of Combined Quadrature Amplitude Modulation and Convolutional Codes for Cross-Coupled Multidimensional Channels
Author
Kavehrad, Mohsen ; McLane, Peter J. ; Sundberg, Carl-Erik W.
Author_Institution
AT&T Bell Labs., NJ
Volume
34
Issue
12
fYear
1986
fDate
12/1/1986 12:00:00 AM
Firstpage
1190
Lastpage
1201
Abstract
The performance of cross-coupled,
-ary quadrature amplitude modulation (QAM) systems is determined when bandwidth efficient trellis codes are used to combat interference. Performance with and without compensation for cross-coupled interference is presented. It is found that simple trellis codes can maintain the error probability at an acceptable level for cross-coupling parameters that render uncoded systems unusable. Up to two-dimensional trellis codes are considered for four-dimensional QAM signals, and possibilities of obtaining diversity advantages in the form of higher total system throughput by prolonged availability of the two signals are explored. This is accomplished through joint coding over two different constellations. The probability of the most likely error events is calculated by using the method of moments. The results are applicable to any digital communication system using multidimensional quadrature amplitude modulation, e.g., voiceband modems, cross-polarized radio systems and, to some extent, optical systems. In the paper the analysis is restricted to nondispersive cross-coupling models. In most cases the coding gain is larger than in the absence of cross-coupling interference. Specifically, it is found that simple codes have coding gains increased by at least 2 dB with cross-coupling interference relative to that obtained on the additive white Gaussian noise channel.
-ary quadrature amplitude modulation (QAM) systems is determined when bandwidth efficient trellis codes are used to combat interference. Performance with and without compensation for cross-coupled interference is presented. It is found that simple trellis codes can maintain the error probability at an acceptable level for cross-coupling parameters that render uncoded systems unusable. Up to two-dimensional trellis codes are considered for four-dimensional QAM signals, and possibilities of obtaining diversity advantages in the form of higher total system throughput by prolonged availability of the two signals are explored. This is accomplished through joint coding over two different constellations. The probability of the most likely error events is calculated by using the method of moments. The results are applicable to any digital communication system using multidimensional quadrature amplitude modulation, e.g., voiceband modems, cross-polarized radio systems and, to some extent, optical systems. In the paper the analysis is restricted to nondispersive cross-coupling models. In most cases the coding gain is larger than in the absence of cross-coupling interference. Specifically, it is found that simple codes have coding gains increased by at least 2 dB with cross-coupling interference relative to that obtained on the additive white Gaussian noise channel.Keywords
Communication systems performance; Quadrature amplitude modulation; Trellis coding; Bandwidth; Convolutional codes; Digital communication; Error probability; Interference; Modems; Moment methods; Multidimensional systems; Quadrature amplitude modulation; Throughput;
fLanguage
English
Journal_Title
Communications, IEEE Transactions on
Publisher
ieee
ISSN
0090-6778
Type
jour
DOI
10.1109/TCOM.1986.1096475
Filename
1096475
Link To Document