DocumentCode :
778305
Title :
Coding for the optical channel: the ghost-pulse constraint
Author :
Kashyap, Navin ; Siegel, Paul H. ; Vardy, Alexander
Author_Institution :
Dept. of Math. & Stat., Queen´´s Univ., Kingston, Ont., Canada
Volume :
52
Issue :
1
fYear :
2006
Firstpage :
64
Lastpage :
77
Abstract :
We consider a number of constrained coding techniques that can be used to mitigate a nonlinear effect in the optical fiber channel that causes the formation of spurious pulses, called "ghost pulses". Specifically, if b1b2...bn is a sequence of bits sent across an optical channel, such that bk=bl=bm=1 for some k,l,m (not necessarily all distinct) but bk+l-m=0, then the ghost-pulse effect causes bk+l-m to change to 1, thereby creating an error. Such errors do not occur if the sequence of bits satisfies the following constraint: for all integers k,l,m such that bk=bl=bm=1, we have bk+l-m=1. We call this the binary ghost-pulse (BGP) constraint. We will show, however, that the BGP constraint has zero capacity, implying that sequences satisfying this constraint cannot carry much information. Consequently, we consider a more sophisticated coding scheme, which uses ternary sequences satisfying a certain ternary ghost-pulse (TGP) constraint. We further relax these constraints by ignoring interactions between symbols that are more than a certain distance t apart in the transmitted sequence. Analysis of the resulting BGP(t) and TGP(t) constraints shows that these have nonzero capacities, and furthermore, the TGP(t)-constrained codes can achieve rates that are significantly higher than those for the corresponding BGP(t) codes. We also discuss the design of encoders and decoders for coding into the BGP, BGP(t), and TGP(t) constraints.
Keywords :
channel coding; decoding; nonlinear optics; optical fibre communication; optical pulse generation; sequential codes; BGP constraint; TGP constraint; binary ghost-pulse; constrained coding technique; encoder-decoder; nonlinear optical effect; optical communication; optical fiber channel; sequence transmission; ternary ghost-pulse; Codes; Decoding; Fiber nonlinear optics; Four-wave mixing; Mathematics; Nonlinear optics; Optical fiber communication; Optical fibers; Optical mixing; Optical pulses; Binary ghost-pulse (BGP) constraint; capacity of constrained systems; constrained encoding and decoding; optical communication; ternary ghost-pulse (TGP) constraint;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2005.860409
Filename :
1564427
Link To Document :
بازگشت