• DocumentCode
    778501
  • Title

    An algorithm for counting short cycles in bipartite graphs

  • Author

    Halford, Thomas R. ; Chugg, Keith M.

  • Author_Institution
    Commun. Sci. Inst., Univ. of Southern California, Los Angeles, CA, USA
  • Volume
    52
  • Issue
    1
  • fYear
    2006
  • Firstpage
    287
  • Lastpage
    292
  • Abstract
    Let G=(U∪W, E) be a bipartite graph with disjoint vertex sets U and W, edge set E, and girth g. This correspondence presents an algorithm for counting the number of cycles of length g, g+2, and g+4 incident upon every vertex in U∪W. The proposed cycle counting algorithm consists of integer matrix operations and its complexity grows as O(gn3) where n=max(|U|,|W|).
  • Keywords
    cyclic codes; graph theory; matrix algebra; parity check codes; bipartite graph; cycle counting algorithm; girth; graphical code model; integer matrix operation; Bipartite graph; Concatenated codes; Convolutional codes; Decoding; Graph theory; Graphical models; Joining processes; Parity check codes; Bipartite graphs; cycles; girth; graphical models of codes; loops;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2005.860472
  • Filename
    1564444