DocumentCode
779575
Title
Retrieval of Fresh Leaf Fuel Moisture Content Using Genetic Algorithm Partial Least Squares (GA-PLS) Modeling
Author
Li, Lin ; Ustin, Susan L. ; Riano, David
Author_Institution
Dept. of Earth Sci., Indiana Univ.-Purdue Univ., Indianapolis, IN
Volume
4
Issue
2
fYear
2007
fDate
4/1/2007 12:00:00 AM
Firstpage
216
Lastpage
220
Abstract
Fuel moisture content (FMC) is an important parameter in forest fire modeling. We investigated the performance of genetic algorithms with partial least squares (GA-PLS) modeling to retrieve live FMC and its components, equivalent water thickness (EWT) and dry matter content (DM), from fresh leaf reflectance in the leaf optical properties experiment dataset. The results show that GA-PLS achieved a good estimation of FMC directly (R2=0.878-0.893) or indirectly (R 2=0.815-0.862) through the joint retrieval of EWT and DM; future work is required to assess the effectiveness of GA-PLS when applied to datasets that consist of low FMC values
Keywords
data acquisition; forestry; genetic algorithms; least squares approximations; moisture measurement; vegetation mapping; Leaf Optical Properties Experiment; dry matter content; equivalent water thickness; forest fire modeling; fresh leaf fuel moisture content retrieval; fresh leaf reflectance; genetic algorithm partial least squares modeling; hyperspectral reflectance; Content based retrieval; Delta modulation; Fires; Fuels; Genetic algorithms; Information retrieval; Least squares methods; Moisture; Reflectivity; Water; Dry matter (DM); Leaf Optical Properties Experiment (LOPEX); equivalent water thickness (EWT); fuel moisture content (FMC); genetic algorithm (GA); hyperspectral reflectance; partial least squares (PLS);
fLanguage
English
Journal_Title
Geoscience and Remote Sensing Letters, IEEE
Publisher
ieee
ISSN
1545-598X
Type
jour
DOI
10.1109/LGRS.2006.888847
Filename
4156162
Link To Document