DocumentCode :
779812
Title :
Identification of 2-D noncausal Gauss-Markov random fields
Author :
Cusani, R. ; Baccarelli, E.
Author_Institution :
INFOCOM Dept., Rome Univ., Italy
Volume :
44
Issue :
3
fYear :
1996
fDate :
3/1/1996 12:00:00 AM
Firstpage :
759
Lastpage :
764
Abstract :
Parameter identification of multidimensional noncausal Markov random fields is an important paradigm in multidimensional signal processing and modeling, and the solutions to this problem are employed in many areas of image processing. An original procedure for estimating the model parameters of discrete-index 2-D noncausal Gauss-Markov random fields (GMRFs) from noisy observations is proposed, valid for both finite and infinite lattices and for any kind of boundary conditions. Starting from a suitable “local” representation of the GMRF and taking into account the symmetry property of so-called field potentials, a linear equation set relating the model parameters to the 2-D autocorrelation function (known or estimated) of the observed field is derived. Its solution gives the parameter estimates of the GMRF together with the estimate of the (possibly unknown) variance of the observation noise
Keywords :
Gaussian processes; Markov processes; correlation methods; image processing; noise; parameter estimation; random processes; signal processing; 2D autocorrelation function; 2D noncausal Gauss-Markov random fields; GMRF; boundary conditions; discrete index 2D noncausal fields; field potentials; finite lattices; identification; image processing; infinite lattices; linear equation; local representation; model parameter estimation; multidimensional noncausal Markov random fields; multidimensional signal modeling; multidimensional signal processing; noisy observations; observation noise variance; symmetry property; Array signal processing; Australia; Finite impulse response filter; Gaussian processes; Lattices; Linear systems; Maximum likelihood estimation; Multidimensional signal processing; Parameter estimation; Sensor arrays;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.489058
Filename :
489058
Link To Document :
بازگشت