DocumentCode :
783947
Title :
An Extended Wavelet Spectrum for Bearing Fault Diagnostics
Author :
Liu, Jie ; Wang, Wilson ; Golnaraghi, Farid
Author_Institution :
Dept. of Mech. & Mechatron. Eng., Univ. of Waterloo, Waterloo, ON
Volume :
57
Issue :
12
fYear :
2008
Firstpage :
2801
Lastpage :
2812
Abstract :
Rolling-element bearings are widely used in various mechanical and electrical systems. A reliable online bearing fault-diagnostic technique is critically needed to prevent the system´s performance degradation and malfunction. In this paper, an extended wavelet spectrum analysis technique is proposed for a more positive assessment of bearing health conditions. Two strategies have been suggested for different wavelet function implementation. Two statistical indexes are proposed to quantify the resulting wavelet (coefficient) functions. Based on the information provided by these indexes, the wavelet functions can be deployed more effectively over the designated frequency bands. An extended Shannon function is proposed to synthesize the wavelet coefficients over selected bandwidths to enhance feature characteristics. An averaged autocorrelation power spectrum is adopted to highlight bearing characteristics. The viability of the developed technique is verified by online experimental tests corresponding to different bearing conditions.
Keywords :
correlation methods; fault diagnosis; reliability; rolling bearings; wavelet transforms; autocorrelation power spectrum; bearing fault diagnostics; bearing reliability; electrical system; extended Shannon function; extended wavelet spectrum; mechanical system; rolling-element bearings; wavelet coefficient; wavelet function implementation; Autocorrelation spectrum; bearing fault diagnostics; extended wavelet spectrum (EWS) analysis; shaft speed detection;
fLanguage :
English
Journal_Title :
Instrumentation and Measurement, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9456
Type :
jour
DOI :
10.1109/TIM.2008.927211
Filename :
4559393
Link To Document :
بازگشت