Title :
Action potentials of curved nerves in finite limbs
Author :
Xiao, Shaojun ; McGill, Kevin C. ; Hentz, Vincent R.
Author_Institution :
Rehabilitation Res. & Dev. Center, VA Med. Center, Palo Alto, CA, USA
fDate :
6/1/1995 12:00:00 AM
Abstract :
Previous simulations of volume-conducted nerve-fiber action-potentials have modeled the limb as semi-infinite or circularly cylindrical, and the fibers as straight lines parallel to the limb surface. The geometry of actual nerves and limbs, however, can be considerably more complicated. Here, the authors present a general method for computing the potentials of fibers with arbitrary paths in arbitrary finite limbs. It involves computing the propagating point-source response (PPSR), which is the potential arising from a single point source (dipole or tripole) travelling along the fiber. The PPSR can be applied to fibers of different conduction velocities by simple dilation or compression. The method is illustrated for oblique and spiralling nerve fibers. Potentials from oblique fibers are shown to be different for orthodromic and antidromic propagation. Such results show that the straight-line models are not always adequate for nerves with anatomical amounts of curvature.
Keywords :
bioelectric potentials; neurophysiology; physiological models; anatomical curvature; antidromic propagation; arbitrary finite limbs; curved nerves; dipole; fiber conduction velocity; finite limbs; oblique nerve fibers; orthodromic propagation; propagating point-source response; single point source; spiralling nerve fibers; straight-line models; tripole; volume-conducted nerve-fiber action-potentials; Anisotropic magnetoresistance; Computational modeling; Conductors; Geometry; Integral equations; Nerve fibers; Nonuniform electric fields; Poisson equations; Temperature; Velocity measurement; Action Potentials; Animals; Anisotropy; Extremities; Humans; Mathematics; Models, Neurological; Nerve Fibers; Neural Conduction;
Journal_Title :
Biomedical Engineering, IEEE Transactions on