DocumentCode :
784064
Title :
Three-Dimensional Imaging of Complex Neural Activation in Humans From EEG
Author :
Ding, Lei ; Zhang, Nanyin ; Chen, Wei ; Bin He
Author_Institution :
Dept. of Biomed. Eng., Univ. of Minnesota, Minneapolis, MN, USA
Volume :
56
Issue :
8
fYear :
2009
Firstpage :
1980
Lastpage :
1988
Abstract :
Electro- or magnetoencephalography (EEG/MEG) are of utmost advantage in studying transient neuronal activity and its timing with respect to behavior in the working human brain. Direct localization of the neural substrates underlying EEG/MEG is commonly achieved by modeling neuronal activity as dipoles. However, the success of neural source localization with the dipole model has only been demonstrated in relatively simple localization tasks owing to the simplified model and its insufficiency in differentiating cortical sources with different extents. It would be of great interest to image complex neural activation with multiple sources of different cortical extensions directly from EEG/MEG. We have investigated this crucial issue by adding additional parameters to the dipole model, leading to the multipole model to better represent the extended sources confined to the convoluted cortical surface. The localization of multiple cortical sources is achieved by using the subspace source localization method with the multipole model. Its performance is evaluated with simulated data as compared with the dipole model, and further illustrated with the real data obtained during visual stimulations in human subjects. The interpretation of the localization results is fully supported by our knowledge about their anatomic locations and functional magnetic resonance imaging data in the same experimental setting. Methods for estimating multiple neuronal sources at cortical areas will facilitate our ability to characterize the cortical electrical activity from simple, early sensory components to more complex networks, such as in visual, motor, and cognitive tasks.
Keywords :
biomedical MRI; cognition; electroencephalography; magnetoencephalography; neurophysiology; EEG; anatomic location; cognitive task; complex neural activation; convoluted cortical surface; cortical electrical activity; electroencephalography; functional magnetic resonance imaging; human brain; magnetoencephalography; neuronal dipole model; subspace source localization method; three-dimensional imaging; Biomedical engineering; Biomedical imaging; Brain modeling; Electroencephalography; Hemodynamics; Humans; Magnetic resonance; Magnetic resonance imaging; Magnetoencephalography; Spatial resolution; Timing; Cortical source; electroencephalography (EEG); extent; multipole; source model; Algorithms; Brain; Brain Mapping; Electroencephalography; Evoked Potentials, Visual; Female; Humans; Imaging, Three-Dimensional; Magnetic Resonance Imaging; Male; Models, Neurological; Visual Cortex;
fLanguage :
English
Journal_Title :
Biomedical Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9294
Type :
jour
DOI :
10.1109/TBME.2009.2020438
Filename :
4895281
Link To Document :
بازگشت