Title :
Fuzzy clustering with volume prototypes and adaptive cluster merging
Author :
Kaymak, Uzay ; Setnes, Magne
Author_Institution :
Dept. of Comput. Sci., Erasmus Univ., Rotterdam, Netherlands
fDate :
12/1/2002 12:00:00 AM
Abstract :
Two extensions to objective function-based fuzzy clustering are proposed. First, the (point) prototypes are extended to hypervolumes, whose size can be fixed or can be determined automatically from the data being clustered. It is shown that clustering with hypervolume prototypes can be formulated as the minimization of an objective function. Second, a heuristic cluster merging step is introduced where the similarity among the clusters is assessed during optimization. Starting with an overestimation of the number of clusters in the data, similar clusters are merged in order to obtain a suitable partitioning. An adaptive threshold for merging is proposed. The extensions proposed are applied to Gustafson-Kessel and fuzzy c-means algorithms, and the resulting extended algorithm is given. The properties of the new algorithm are illustrated by various examples.
Keywords :
data structures; fuzzy set theory; fuzzy systems; merging; minimisation; pattern clustering; Gustafson-Kessel algorithms; adaptive cluster merging; adaptive threshold; fuzzy c-means algorithms; heuristic cluster merging step; hypervolumes; objective function minimization; objective function-based fuzzy clustering; partitioning; similarity; volume prototypes; Automatic control; Clustering algorithms; Data analysis; Fuzzy sets; Image processing; Merging; Partitioning algorithms; Pattern recognition; Prototypes; Shape measurement;
Journal_Title :
Fuzzy Systems, IEEE Transactions on
DOI :
10.1109/TFUZZ.2002.805901