DocumentCode :
786712
Title :
Designing fuzzy net controllers using genetic algorithms
Author :
Kim, Jinwoo ; Moon, Yoonkeon ; Zeigler, Bernard P.
Author_Institution :
Dept. of Electr. & Comput. Eng., Arizona Univ., Tucson, AZ, USA
Volume :
15
Issue :
3
fYear :
1995
fDate :
6/1/1995 12:00:00 AM
Firstpage :
66
Lastpage :
72
Abstract :
As control system tasks become more demanding, more robust controller design methodologies are needed. A genetic algorithm (GA) optimizer, which utilizes natural evolution strategies, offers a promising technology that supports optimization of the parameters of fuzzy logic and other parameterized nonlinear controllers. This article shows how GAs can effectively and efficiently optimize the performance of fuzzy net controllers employing high performance simulation to reduce the design cycle time from hours to minutes. Our results demonstrate the robustness of a GA-based computer-aided system design methodology for rapid prototyping of control systems
Keywords :
control system CAD; fuzzy control; fuzzy neural nets; genetic algorithms; neurocontrollers; nonlinear control systems; robust control; fuzzy logic; fuzzy net controller design; genetic algorithms; neural nets; parameter optimization; parameterized nonlinear controllers; robust controller design; Algorithm design and analysis; Computational modeling; Control systems; Design methodology; Design optimization; Fuzzy control; Fuzzy logic; Genetic algorithms; Prototypes; Robust control;
fLanguage :
English
Journal_Title :
Control Systems, IEEE
Publisher :
ieee
ISSN :
1066-033X
Type :
jour
DOI :
10.1109/37.387619
Filename :
387619
Link To Document :
بازگشت