DocumentCode :
788314
Title :
Relative stability of global errors of nonparametric function estimators
Author :
Györfi, László ; Schäfer, Dominik ; Walk, Harro
Author_Institution :
Dept. of Comput. Sci. & Inf. Theor., Tech. Univ. Budapest, Hungary
Volume :
48
Issue :
8
fYear :
2002
fDate :
8/1/2002 12:00:00 AM
Firstpage :
2230
Lastpage :
2242
Abstract :
This paper presents relative stability properties of various nonparametric density estimators (histogram, kernel estimates) and of regression estimators (partitioning, kernel, and nearest neighbor estimates). In density estimation, let En denote the L1 error of an estimate calculated from n data, whereas in regression estimation, the L2 error of the estimate is used. Sufficient conditions for En/E{En}→1 in probability are provided. If this limit holds, the asymptotic behavior of the random error En can be characterized by its expectation E{En},, and one may apply, for example, the established rate-of-convergence results for E{En}.
Keywords :
error analysis; nonparametric statistics; numerical stability; recursive estimation; bandwidth; convergence rate; global errors; histogram; identically distributed random variables; kernel estimates; nearest neighbor estimates; nonparametric density estimators; nonparametric function estimators; partitioning; probability; regression estimators; relative stability properties; sufficient conditions; upper bound; Computer errors; Convergence; Estimation error; H infinity control; Histograms; Kernel; Nearest neighbor searches; Random variables; Stability; Sufficient conditions;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2002.800491
Filename :
1019835
Link To Document :
بازگشت