DocumentCode :
788452
Title :
Beyond stabilizer codes II: Clifford codes
Author :
Klappenecker, Andreas ; Rötteler, Martin
Author_Institution :
Dept. of Comput. Sci., Texas A&M Univ., College Station, TX, USA
Volume :
48
Issue :
8
fYear :
2002
fDate :
8/1/2002 12:00:00 AM
Firstpage :
2396
Lastpage :
2399
Abstract :
For pt. I see ibid., vol.48, no.8, p.2392-95 (2002). Knill (1996) introduced a generalization of stabilizer codes, called Clifford codes. It remained unclear whether or not Clifford codes can be superior to stabilizer codes. We show that Clifford codes are stabilizer codes provided that the abstract error group has an Abelian index group. In particular, if the errors are modeled by tensor products of Pauli matrices, then the associated Clifford codes are necessarily stabilizer codes.
Keywords :
binary codes; error correction codes; group theory; matrix algebra; quantum computing; Abelian index group; Clifford codes; Pauli matrices; abstract error group; binary stabilizer codes; quantum error control codes; stabilizer codes; tensor products; Associate members; Computer errors; Computer science; Error correction; Error correction codes; Information theory; Protection; Quantum computing; Quantum mechanics; Tensile stress;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT/2002.800473
Filename :
1019850
Link To Document :
بازگشت