Title :
Beyond stabilizer codes II: Clifford codes
Author :
Klappenecker, Andreas ; Rötteler, Martin
Author_Institution :
Dept. of Comput. Sci., Texas A&M Univ., College Station, TX, USA
fDate :
8/1/2002 12:00:00 AM
Abstract :
For pt. I see ibid., vol.48, no.8, p.2392-95 (2002). Knill (1996) introduced a generalization of stabilizer codes, called Clifford codes. It remained unclear whether or not Clifford codes can be superior to stabilizer codes. We show that Clifford codes are stabilizer codes provided that the abstract error group has an Abelian index group. In particular, if the errors are modeled by tensor products of Pauli matrices, then the associated Clifford codes are necessarily stabilizer codes.
Keywords :
binary codes; error correction codes; group theory; matrix algebra; quantum computing; Abelian index group; Clifford codes; Pauli matrices; abstract error group; binary stabilizer codes; quantum error control codes; stabilizer codes; tensor products; Associate members; Computer errors; Computer science; Error correction; Error correction codes; Information theory; Protection; Quantum computing; Quantum mechanics; Tensile stress;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT/2002.800473