Title :
Analysis and design of a cylindrical EBG-based directive antenna
Author :
Boutayeb, Halim ; Denidni, Tayeb A. ; Mahdjoubi, Kouroch ; Tarot, Anne-Claude ; Sebak, Abdel-Razik ; Talbi, Larbi
Author_Institution :
INRS-EMT, Univ. of Quebec, Montreal, Canada
Abstract :
In this paper, a cylindrical electromagnetic bandgap (CEBG) structure composed of infinite metallic wires is analyzed, designed and used as a model to develop a new reconfigurable directive antenna. This structure is circularly and radially periodic, and it is excited at its center using an omnidirectional source. The analysis is based on calculating the transmission and reflection coefficients of a single cylindrical frequency selective surface (FSS) and then, considering only the fundamental mode interaction, deducing the frequency response of the CEBG structure composed of multiple cylindrical FSSs. For this structure, new analytical formulas are derived, and their accuracy is assessed compared to those obtained by the finite-difference time-domain method. As in rectangularly periodic structure case, the frequency response of the CEBG structure exhibits pass-bands and bandgaps, and it is possible to obtain directive beams by introducing defects in the periodic structure. Using this concept, a new antenna was developed to obtain a controllable directive beam. An antenna prototype, without control, was designed, fabricated, and tested. An excellent agreement was obtained between theory and experiment for both return loss and radiation patterns.
Keywords :
antenna radiation patterns; antenna testing; circular waveguides; directive antennas; electromagnetic wave reflection; electromagnetic wave transmission; finite difference time-domain analysis; frequency response; frequency selective surfaces; periodic structures; photonic band gap; waveguide antenna arrays; wire antennas; CEBG design; antenna radiation pattern; controllable directive beam; cylindrical electromagnetic bandgap structure; finite-difference time-domain method; frequency response; frequency selective surface; fundamental mode interaction; metallic wire; multiple cylindrical FSS; omnidirectional source; pass-band structure; periodic structure; reconfigurable directive antenna; transmission-reflection coefficient; Directive antennas; Electromagnetic analysis; Electromagnetic modeling; Finite difference methods; Frequency response; Frequency selective surfaces; Optical reflection; Periodic structures; Time domain analysis; Wires; Cylindrical structures; directive antennas; electromagnetic bandgap (EBG) materials; periodic structures;
Journal_Title :
Antennas and Propagation, IEEE Transactions on
DOI :
10.1109/TAP.2005.861560