DocumentCode :
794285
Title :
On the optimal parameter choice for ν-support vector machines
Author :
Steinwart, Ingo
Author_Institution :
Modeling, Algorithms, & Informatics Group, Los Alamos Nat. Lab., NM, USA
Volume :
25
Issue :
10
fYear :
2003
Firstpage :
1274
Lastpage :
1284
Abstract :
We determine the asymptotically optimal choice of the parameter ν for classifiers of ν-support vector machine (ν-SVM) type which has been introduced by Scholkopf et al. (2000). It turns out that ν should be a close upper estimate of twice the optimal Bayes risk provided that the classifier uses a so-called universal kernel such as the Gaussian RBF kernel. Moreover, several experiments show that this result can be used to implement some modified cross validation procedures which improve standard cross validation for ν-SVMs.
Keywords :
learning automata; parameter estimation; pattern recognition; PAC model; cross validation; parameter selection; support vector machines; Equations; H infinity control; Kernel; Noise level; Noise measurement; Support vector machine classification; Support vector machines; Upper bound;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2003.1233901
Filename :
1233901
Link To Document :
بازگشت