DocumentCode :
794803
Title :
Computation of the exact cramer-rao lower bound for 2-D ARMA parameter Estimation-I: the quarter-plane case
Author :
Kizilkaya, Aydin ; Kayran, Ahmet H.
Author_Institution :
Electr. & Electron. Eng. Dept., Istanbul Tech. Univ.
Volume :
53
Issue :
1
fYear :
2006
Firstpage :
23
Lastpage :
27
Abstract :
A closed-form expression for computing the exact Cramer-Rao lower bound (CRLB) on unbiased estimates of the parameters of a two-dimensional (2-D) autoregressive moving average (ARMA) model is developed. The formulation is based on a matrix representation of 2-D homogeneous Gaussian random process that is generated uniformly from the related 2-D ARMA model. The formulas derived for the exact Fisher information matrix (FIM) are an explicit function of the 2-D ARMA parameters and are valid for real-valued homogeneous quarter-plane (QP) 2-D ARMA random fields, where data are propagated using only the past values. It is noteworthy that our approach is practical especially for quantifying the accuracy of 2-D ARMA parameter estimates realized with short data records. Computer simulations display the behavior of the derived CRLB expression for some QP causal 2-D ARMA processes, as a function of the number of data points. The extension of this algorithm for the nonsymmetric half-plane (NSHP) case will be presented in a subsequent paper
Keywords :
Gaussian processes; autoregressive moving average processes; matrix algebra; parameter estimation; random processes; signal processing; 2D ARMA parameter estimation; 2D homogeneous Gaussian random process; Cramer-Rao lower bound; Fisher information matrix; autoregressive moving average model; homogeneous quarter-plane 2D ARMA random fields; matrix representation; nonsymmetric half-plane; Autoregressive processes; Closed-form solution; Computer aided software engineering; Computer simulation; Image coding; Parameter estimation; Quadratic programming; Random processes; Signal processing algorithms; Two dimensional displays; Cramer–Rao lower bound (CRLB); Fisher information matrix (FIM); multidimensional parameter estimation; quarter-plane (QP) two-dimensional (2-D) autoregressive moving average (ARMA) model; real-valued homogeneous random fields;
fLanguage :
English
Journal_Title :
Circuits and Systems II: Express Briefs, IEEE Transactions on
Publisher :
ieee
ISSN :
1549-7747
Type :
jour
DOI :
10.1109/TCSII.2005.854314
Filename :
1576918
Link To Document :
بازگشت