Title :
Motion Normalized Proportional Control for Improved Pattern Recognition-Based Myoelectric Control
Author :
Scheme, E. ; Lock, Brad ; Hargrove, Levi ; Hill, Wendy ; Kuruganti, Usha ; Englehart, K.
Author_Institution :
Inst. of Biomed. Eng., Univ. of New Brunswick, Fredericton, NB, Canada
Abstract :
This paper describes two novel proportional control algorithms for use with pattern recognition-based myoelectric control. The systems were designed to provide automatic configuration of motion-specific gains and to normalize the control space to the user´s usable dynamic range. Class-specific normalization parameters were calculated using data collected during classifier training and require no additional user action or configuration. The new control schemes were compared to the standard method of deriving proportional control using a one degree of freedom Fitts´ law test for each of the wrist flexion/extension, wrist pronation/supination and hand close/open degrees of freedom. Performance was evaluated using the Fitts´ law throughput value as well as more descriptive metrics including path efficiency, overshoot, stopping distance and completion rate. The proposed normalization methods significantly outperformed the incumbent method in every performance category for able bodied subjects and nearly every category for amputee subjects. Furthermore, one proposed method significantly outperformed both other methods in throughput , yielding 21% and 40% improvement over the incumbent method for amputee and able bodied subjects, respectively. The proposed control schemes represent a computationally simple method of fundamentally improving myoelectric control users´ ability to elicit robust, and controlled, proportional velocity commands.
Keywords :
electromyography; medical control systems; medical signal processing; proportional control; prosthetics; signal classification; velocity control; Fitts law testing; amputee subjects; automatic configuration; class-specific normalization parameters; classifier training; control space normalisation; data collection; hand close-open degree-of-freedom; improved pattern recognition-based myoelectric control; motion normalized proportional control; motion-specific gains; proportional velocity commands; user usable dynamic range; wrist flexion-extension; wrist pronation-supination; Electromyography; Pattern recognition; Proportional control; Throughput; Training; Wrist; amputee; electromyogram (EMG); myoelectric; pattern recognition; proportional control; prostheses; velocity control;
Journal_Title :
Neural Systems and Rehabilitation Engineering, IEEE Transactions on
DOI :
10.1109/TNSRE.2013.2247421