• DocumentCode
    796487
  • Title

    Diagnosing arbitrarily connected parallel computers with high probability

  • Author

    Rangarajan, Sampath ; Fussell, Donald

  • Author_Institution
    UMIACS, Maryland Univ., College Park, MD, USA
  • Volume
    41
  • Issue
    5
  • fYear
    1992
  • fDate
    5/1/1992 12:00:00 AM
  • Firstpage
    606
  • Lastpage
    615
  • Abstract
    A practical model for probabilistic fault diagnosis is presented. Unlike PMC-based models, the model allows testers to conduct multiple tests on the same processor. This allows the design of efficient probabilistic diagnosis algorithms with good asymptotic behavior, with minimal constraints on the connection structure of the multiprocessor system, in contrast to other deterministic and probabilistic approaches. In practical cases, the number of immediate neighbors of any processor need be no greater than two, which implies that the algorithm can be applied to any practical homogeneous parallel architecture. It is also shown how to make efficient use of tests by allowing the number of testing processors, and the number of tests performed by a processor to be traded off in achieving asymptotically accurate diagnosis
  • Keywords
    fault tolerant computing; parallel algorithms; parallel architectures; parallel machines; probability; asymptotic behavior; homogeneous parallel architecture; immediate neighbors; multiple tests; multiprocessor system; parallel computers; probabilistic diagnosis algorithms; probabilistic fault diagnosis; testing processors; Algorithm design and analysis; Concurrent computing; Fault diagnosis; Hypercubes; Large-scale systems; Multiprocessing systems; Performance evaluation; System testing; Topology;
  • fLanguage
    English
  • Journal_Title
    Computers, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9340
  • Type

    jour

  • DOI
    10.1109/12.142687
  • Filename
    142687