DocumentCode :
796862
Title :
On the existence of optimal solutions for the linear system quadratic cost problem
Author :
Sivan, Raphael ; Shalvi, Shlomo
Author_Institution :
Tenchion--Israel Institute of Technology, Haifa, Israel
Volume :
13
Issue :
2
fYear :
1968
fDate :
4/1/1968 12:00:00 AM
Firstpage :
188
Lastpage :
191
Abstract :
The linear system \\dot{x} = Ax +bu with the quadratic cost function \\int\\min{0}\\max {\\infty }(x\´Hx+u^{2})dt is considered. The following equivalent conditions are shown to be necessary and sufficient for the existence of a solution to the optimization problem: 1) the existence of a positive definite solution for the algebraic matrix Riccati equation; 2) the existence of a vector k such that the matrix A-bk\´ is asymptotically stables and 3) the cancellations in the vector (sI-A)^{-1}b are only of stable factors.
Keywords :
Linear systems, time-invariant continuous-time; Optimal control; Boundary conditions; Control systems; Cost function; Gas detectors; Linear systems; Open loop systems; Optimal control; Signal design; Stochastic resonance; Stochastic systems;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1968.1098845
Filename :
1098845
Link To Document :
بازگشت