DocumentCode :
800335
Title :
A theorem on the Lyapunov matrix equation
Author :
Man, F.T.
Author_Institution :
University of Toronto, Toronto, Canada
Volume :
14
Issue :
3
fYear :
1969
fDate :
6/1/1969 12:00:00 AM
Firstpage :
306
Lastpage :
306
Abstract :
Given the Lyapunov matrix equation A\´P + PA + 2\\sigma Q = 0 where σ is some positive scalar, a necessary and sufficient condition for the real parts of the eigenvalues of A to be less than -σ is that P - Q is negative definite. The condition provides an upper bound to the solution of the Lyapunov matrix equation and is useful in the design of minimum-time or minimum-cost linear control systems.
Keywords :
Lyapunov matrix equations; Control systems; Costs; Councils; Eigenvalues and eigenfunctions; Equations; Scholarships; Symmetric matrices; Upper bound;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1969.1099179
Filename :
1099179
Link To Document :
بازگشت