Title :
Maximum likelihood estimation of solid-rotor synchronous machine parameters from SSFR test data
Author :
Keyhani, A. ; Hao, S. ; Dayal, G.
Author_Institution :
Ohio State Univ., Columbus, OH, USA
fDate :
9/1/1989 12:00:00 AM
Abstract :
Based on previous work (presented at the IEEE/PES 1989 Winter Meeting, New York) in which it was established that multiple parameter sets are obtained when the machine parameters are estimated from noise-corrupted frequency-domain data, the effects of noise on time-domain parameter estimation of synchronous machine models are studied. The proposed approach can be applied to the SSFR test data or time-domain test data. It is shown that a unique set of parameters can be obtained, and the noise effects can be dealt with effectively when the maximum-likelihood estimation technique is used to estimate machine parameters
Keywords :
parameter estimation; synchronous machines; time-domain analysis; maximum-likelihood estimation; noise; solid-rotor synchronous machine parameters; time-domain parameter estimation; Electromagnetic modeling; Frequency estimation; Maximum likelihood estimation; Parameter estimation; State estimation; Student members; Synchronous machines; Testing; Time domain analysis; Transfer functions;
Journal_Title :
Energy Conversion, IEEE Transactions on