DocumentCode :
802225
Title :
Computation of optimal singular controls
Author :
Jacobson, David H. ; Gershwin, Stanley B. ; Lele, Milind L.
Author_Institution :
Harvard University, Cambridge, MA, USA
Volume :
15
Issue :
1
fYear :
1970
fDate :
2/1/1970 12:00:00 AM
Firstpage :
67
Lastpage :
73
Abstract :
A class of singular control problems is made nonsingular by the addition of an integral quadratic functional of the control to the cost functional; a parameter \\epsilon > 0 multiplies this added functional. The resulting nonsingular problem is solved for a monotonically decreasing sequence {\\epsilon; \\epsilon_{1} > \\epsilon_{2} > ... > \\epsilon_{k} > 0} . As k \\rightarrow \\infty and \\epsilon_{k} \\rightarrow 0 the solution of the modified problem tends to the solution of the original singular problem. A variant of the method which does not require that \\epsilon \\rightarrow 0 is also presented. Four illustrative numerical examples are described.
Keywords :
Nonlinear systems; Singular optimal control; Convergence; Cost function; Gradient methods; Jacobian matrices; Optimal control; Performance analysis;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1970.1099360
Filename :
1099360
Link To Document :
بازگشت