DocumentCode :
802435
Title :
An efficient method for computing optical waveguides with discontinuous refractive index profiles using spectral collocation method with domain decomposition
Author :
Huang, Chia-Chien ; Huang, Chia-Chih ; Yang, Jaw-Yen
Author_Institution :
Inst. of Appl. Mech., Nat. Taiwan Univ., Taipei, Taiwan
Volume :
21
Issue :
10
fYear :
2003
Firstpage :
2284
Lastpage :
2296
Abstract :
An accurate and efficient solution method using spectral collocation method with domain decomposition is proposed for computing optical waveguides with discontinuous refractive index profiles. The use of domain decomposition divides the usual single domain into a few subdomains at the interfaces of discontinuous refractive index profiles. Each subdomain can be expanded by a suitable set of orthogonal basis functions and patched at these interfaces by matching the physical boundary conditions. In addition, a new technique incorporating the effective index method and the Wentzel-Kramers-Brillouin method for the a-priori determination of the scaling factor in Hermite-Gauss or Laguerre-Gauss basis functions is introduced to considerably save computational time without experimenting with it. This method shares the same desirable property of the spectral collocation method of providing a fast and accurate solution but avoids the oscillatory solutions and improves the poor convergence problem of the simple spectral collocation method with single domain where regions of discontinuous refractive index profiles exist. Applications to several two- and three-dimensional waveguide structures having exact or accurate approximate solutions are given to test the accuracy and efficiency; all the results are found to be in excellent agreement.
Keywords :
WKB calculations; boundary-value problems; optical waveguide theory; refractive index; 2D waveguides; 3-D waveguides; Hermite-Gauss basis functions; Laguerre-Gauss basis functions; Wentzel-Kramers-Brillouin method; accuracy; continuous refractive index profiles; discontinuous refractive index profiles; domain decomposition; effective index method; optical waveguides; orthogonal basis functions; oscillatory solutions; physical boundary conditions; poor convergence problem; scaling factor; spectral collocation method; three-dimensional waveguide structures; two-dimensional waveguide structures; Electromagnetic waveguides; Optical computing; Optical devices; Optical filters; Optical modulation; Optical refraction; Optical variables control; Optical waveguides; Refractive index; Waveguide discontinuities;
fLanguage :
English
Journal_Title :
Lightwave Technology, Journal of
Publisher :
ieee
ISSN :
0733-8724
Type :
jour
DOI :
10.1109/JLT.2003.816895
Filename :
1236500
Link To Document :
بازگشت