Title :
A Selection Model for Optimal Fuzzy Clustering Algorithm and Number of Clusters Based on Competitive Comprehensive Fuzzy Evaluation
Author :
Wang, Yaonan ; Li, Chunsheng ; Zuo, Yi
Author_Institution :
Coll. of Electr. & Inf. Technol., Hunan Univ., Changsha
fDate :
6/1/2009 12:00:00 AM
Abstract :
Fuzzy c-means (FCM) and its variants suffer from two problems-local minima and cluster validity-which have a direct impact on the formation of final clustering. There are two strategies-optimization and center initialization strategies-that address the problem of local minima. This paper proposes a center initialization approach based on a minimum spanning tree to keep FCM from local minima. With regard to cluster validity, various strategies have been proposed. On the basis of the fuzzy cluster validity index, this paper proposes a selection model that combines multiple pairs of a fuzzy clustering algorithm and cluster validity index to identify the number of clusters and simultaneously selects the optimal fuzzy clustering for a dataset. The promising performance of the proposed center-initialization method and selection model is demonstrated by experiments on real datasets.
Keywords :
fuzzy set theory; pattern clustering; trees (mathematics); center initialization approach; competitive comprehensive fuzzy evaluation; fuzzy c-means; fuzzy cluster validity index; minimum spanning tree; optimal fuzzy clustering algorithm; Cluster validity index; Selection model; cluster validity index; competitive comprehensive fuzzy evaluation; fuzzy clustering algorithm; minimum spanning tree; minimum spanning tree (MST); selection model;
Journal_Title :
Fuzzy Systems, IEEE Transactions on
DOI :
10.1109/TFUZZ.2008.928601