DocumentCode :
803392
Title :
Minimum energy control of systems with time delay
Author :
Rekasius, Zanonas V. ; Lawrence, Gene A.
Author_Institution :
Northwestern University, Evanston, IL, USA
Volume :
15
Issue :
3
fYear :
1970
fDate :
6/1/1970 12:00:00 AM
Firstpage :
365
Lastpage :
368
Abstract :
The problem of minimizing the cost functional corresponding to minimum control energy I = \\int\\min{0}\\max {\\infty }u^{2} dt for the linear system with delay \\dot{x}(t) = Ax(t) + Bx(t - h) + cu(t) is considered. From sufficient conditions for optimality, one obtains a set of algebraic equations. Numerical solution of these equations yields the optimal control law.
Keywords :
Delay systems; Linear time-invariant (LTI) systems; Minimum-energy control; Asymptotic stability; Control systems; Cost function; Delay effects; Equations; Feedback control; Matrices; Optimal control; Performance analysis;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1970.1099468
Filename :
1099468
Link To Document :
بازگشت