DocumentCode
80430
Title
Long-Term Effects of Relative Humidity on the Performance of ZnO-Based MEMS Acoustic Sensors
Author
Prasad, M. ; Sahula, Vineet ; Khanna, Vinod Kumar
Author_Institution
MEMS & Microsensors Group, Central Electron. Eng. Res. Inst., Pilani, India
Volume
14
Issue
2
fYear
2014
fDate
Jun-14
Firstpage
778
Lastpage
780
Abstract
This paper investigates the long-term repercussions of relative humidity on capacitance and dissipation factor tan δ of ZnO-based MEMS acoustic sensors. During the fabrication process, a ZnO layer covered with a 0.3-μm-thick PECVD layer was sandwiched between two aluminum (Al) electrodes on a 25-μm-thick silicon diaphragm made by a bulk micromachining technique. The fabrication of an acoustic sensor chip was then completed by etching a ZnO layer in the presence of strong acid (HCl) and weak acid (NH4Cl with electrolytically added Cu ions), separately. Post fabrication, under the humid environment conditions prevailing over a long period of time, viz., 150 days, with relative humidity between 60% and 80%, the capacitance values were found to be 1.5 times higher than the original values in the case of strong acid. The corresponding losses tan δ increased from 0.03 to 0.06. However, under the same conditions, the capacitance values did not change for the acoustic chips fabricated using weak acid. The deterioration in frequency and sensitivity responses of the packaged device has been also observed in the case of etching using strong acid. The investigations showed that a 0.3-μm-thick PECVD silicon dioxide as a passivating layer could protect the sensors from ambient humidity over a long period of time, because of a positive slope of a ZnO edge. However, the response of the devices for a negative slope of a ZnO edge was affected due to nonuniform step coverage of a ZnO layer.
Keywords
etching; micromachining; microsensors; passivation; plasma CVD; Al; MEMS acoustic sensors; PECVD layer; PECVD silicon dioxide; Si; ZnO; acoustic sensor chip; aluminum electrodes; bulk micromachining technique; dissipation factor; etching; fabrication process; frequency response; humid environment conditions; passivating layer; relative humidity; sensitivity response; silicon diaphragm; size 0.3 mum; size 25 mum; weak acid; Acoustic measurements; Acoustic sensors; Capacitance; Etching; Humidity; Loss measurement; Zinc oxide; MEMS acoustic sensor; ZnO; bulk micromachining; humidity;
fLanguage
English
Journal_Title
Device and Materials Reliability, IEEE Transactions on
Publisher
ieee
ISSN
1530-4388
Type
jour
DOI
10.1109/TDMR.2014.2317415
Filename
6798753
Link To Document