Title :
Automatic Contour Propagation in Cine Cardiac Magnetic Resonance Images
Author :
Hautvast, G. ; Lobregt, S. ; Breeuwer, M. ; Gerritsen, F.
Author_Institution :
Biomed. Image Anal. group, Eindhoven Univ. of Technol.
Abstract :
We have developed a method for automatic contour propagation in cine cardiac magnetic resonance images. The method consists of a new active contour model that tries to maintain a constant contour environment by matching gray values in profiles perpendicular to the contour. Consequently, the contours should maintain a constant position with respect to neighboring anatomical structures, such that the resulting contours reflect the preferences of the user. This is particularly important in cine cardiac magnetic resonance images because local image features do not describe the desired contours near the papillary muscle. The accuracy of the propagation result is influenced by several parameters. Because the optimal setting of these parameters is application dependent, we describe how to use full factorial experiments to optimize the parameter setting. We have applied our method to cine cardiac magnetic resonance image sequences from the long axis two-chamber view, the long axis four-chamber view, and the short axis view. We performed our optimization procedure for each contour in each view. Next, we performed an extensive clinical validation of our method on 69 short axis data sets and 38 long axis data sets. In the optimal parameter setting, our propagation method proved to be fast, robust, and accurate. The resulting cardiac contours are positioned within the interobserver ranges of manual segmentation. Consequently, the resulting contours can be used to accurately determine physiological parameters such as stroke volume and ejection fraction
Keywords :
biomedical MRI; cardiology; image segmentation; image sequences; medical image processing; optimisation; automatic contour propagation; cine cardiac magnetic resonance images; ejection fraction; image sequences; parameter setting optimization; segmentation; stroke volume; Active contours; Biomedical imaging; Biomedical informatics; Heart; Magnetic resonance; Magnetic resonance imaging; Morphology; Muscles; Myocardium; Protocols; Active contours; cardiac magnetic resonance imaging (MRI); propagation; Algorithms; Artificial Intelligence; Heart; Image Enhancement; Image Interpretation, Computer-Assisted; Imaging, Three-Dimensional; Information Storage and Retrieval; Magnetic Resonance Imaging, Cine; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Subtraction Technique;
Journal_Title :
Medical Imaging, IEEE Transactions on
DOI :
10.1109/TMI.2006.882124