Title :
Large-system performance analysis of blind and group-blind multiuser receivers
Author :
Zhang, Junshan ; Wang, Xiaodong
Author_Institution :
Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA
fDate :
9/1/2002 12:00:00 AM
Abstract :
We present a large-system performance analysis of blind and group-blind multiuser detection methods. In these methods, the receivers are estimated based on the received signal samples. In particular, we assume binary random spreading, and let the spreading gain N, the number of users K, and the number of received signal samples M all go to infinity, while keeping the ratios K/N and M/N fixed. We characterize the asymptotic performance of the direct-matrix inversion (DMI) blind linear minimum mean-square error (MMSE) receiver, the subspace blind linear MMSE receiver, and the group-blind linear hybrid receiver. We first derive the asymptotic average output signal-to-interference-plus-noise ratio (SINR) for each of these receivers. Our results reveal an interesting "saturation" phenomenon: The output SINR of each of these receivers converges to a finite limit as the signal-to-noise ratio (SNR) of the desired user increases, which is in stark contrast to the fact that the output SINR achieved by the exact linear MMSE receiver can get arbitrarily large. This indicates that the capacity of a wireless system with blind or group-blind multiuser receivers is not only interference-limited, but also estimation-error limited. We then show that for both the blind and group-blind receivers, the output residual interference has an asymptotic Gaussian distribution, independent of the realizations of the spreading sequences. The Gaussianity indicates that in a large system, the bit-error rate (BER) is related to the SINR simply through the Q function
Keywords :
Gaussian distribution; code division multiple access; interference (signal); least mean squares methods; matrix inversion; multiuser channels; receivers; signal detection; BER; DMI MMSE receiver; Gaussianity; Q function; SINR; asymptotic Gaussian distribution; asymptotic average output signal-to-interference-plus-noise ratio; asymptotic performance; binary random spreading; bit-error rate; blind multiuser receivers; capacity; direct-matrix inversion blind linear minimum mean-square error receiver; estimation-error limited system; group-blind linear hybrid receiver; group-blind multiuser receivers; interference-limited system; large-system performance analysis; output residual interference; saturation phenomenon; signal-to-noise ratio; subspace blind linear MMSE receiver; wireless system; Antennas and propagation; Bit error rate; Interference; Multiaccess communication; Multiuser detection; Performance analysis; Performance gain; Receiving antennas; Signal to noise ratio; Transmitting antennas;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2002.801468