DocumentCode :
805212
Title :
Random codes: minimum distances and error exponents
Author :
Barg, Alexander ; Forney, G. David, Jr.
Volume :
48
Issue :
9
fYear :
2002
fDate :
9/1/2002 12:00:00 AM
Firstpage :
2568
Lastpage :
2573
Abstract :
Minimum distances, distance distributions, and error exponents on a binary-symmetric channel (BSC) are given for typical codes from Shannon´s random code ensemble and for typical codes from a random linear code ensemble. A typical random code of length N and rate R is shown to have minimum distance NδGV(2R), where δGV(R) is the Gilbert-Varshamov (GV) relative distance at rate R, whereas a typical linear code (TLC) has minimum distance NδGV(R). Consequently, a TLC has a better error exponent on a BSC at low rates, namely, the expurgated error exponent.
Keywords :
channel coding; linear codes; random codes; BSC; Gilbert-Varshamov relative distance; Shannon´s random code ensemble; binary-symmetric channel; distance distributions; error exponents; minimum distances; random linear code ensemble; Binary codes; Channel capacity; Code standards; Computer errors; Entropy; Equations; Information theory; Linear code;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2002.800480
Filename :
1027785
Link To Document :
بازگشت