Title :
Multicategory classification of body surface potential maps
Author :
Reich, Yehuda ; Thomas, Cecil W. ; Pao, Yoh-Han ; Liebman, Jerome ; Rudy, Yoram
Author_Institution :
Rafael, Armament Dev. Authority, Haifa, Israel
Abstract :
A statistical classification method is suggested for body surface potential maps (BSPM). The initial data reduction utilizes the Fourier expansion and time integration, resulting in physiologically oriented features. Based on Fischer´s criterion, optimal discriminant vectors are used to map the features to an optimal subdomain. Experimental criteria determine the dimensionality of the subdomain and the number of features to be mapped into it. Classification is performed in two steps. In the first, a k-nearest neighbor (k-NN) rule is used for every two-category problem, the results of which are then fed into a voting rule for final classification. The method is tested with 123 patients divided into four categories: normal (NR), ischemia (IS), myocardial infarction (MI), and left bundle branch block (LB) patients. The success is between 88% (IS) and 100% (for LB) for QRS segment integration. Departure maps were used to explain the misclassified patterns.
Keywords :
computerised pattern recognition; data reduction; electrocardiography; medical diagnostic computing; statistical analysis; ECG; Fischer´s criterion; Fourier expansion; QRS segment integration; body surface potential maps; data reduction; k-nearest neighbour rule; multicategory classification; optimal discriminant vectors; optimal subdomain; physiologically oriented features; statistical classification method; time integration; Electrocardiography; Electrodes; Heart; Ischemic pain; Myocardium; Pediatrics; Singular value decomposition; Testing; Torso; Voting; Algorithms; Electrocardiography; Fourier Analysis; Heart Diseases; Humans; Signal Processing, Computer-Assisted;
Journal_Title :
Biomedical Engineering, IEEE Transactions on