DocumentCode :
8061
Title :
Unbiased Risk Estimates for Singular Value Thresholding and Spectral Estimators
Author :
Candes, Emmanuel ; Sing-Long, Carlos A. ; Trzasko, Joshua D.
Author_Institution :
Dept. of Stat., Stanford Univ., Stanford, CA, USA
Volume :
61
Issue :
19
fYear :
2013
fDate :
Oct.1, 2013
Firstpage :
4643
Lastpage :
4657
Abstract :
In an increasing number of applications, it is of interest to recover an approximately low-rank data matrix from noisy observations. This paper develops an unbiased risk estimate-holding in a Gaussian model-for any spectral estimator obeying some mild regularity assumptions. In particular, we give an unbiased risk estimate formula for singular value thresholding (SVT), a popular estimation strategy that applies a soft-thresholding rule to the singular values of the noisy observations. Among other things, our formulas offer a principled and automated way of selecting regularization parameters in a variety of problems. In particular, we demonstrate the utility of the unbiased risk estimation for SVT-based denoising of real clinical cardiac MRI series data. We also give new results concerning the differentiability of certain matrix-valued functions.
Keywords :
Gaussian processes; biomedical MRI; eigenvalues and eigenfunctions; estimation theory; image denoising; matrix algebra; medical image processing; singular value decomposition; Gaussian model; SVT-based denoising; low-rank data matrix; noisy observations; real clinical cardiac MRI series data; regularization parameters; singular value thresholding; soft-thresholding rule; spectral estimator; unbiased risk estimate; Differentiability of eigenvalues and eigenvectors; Stein´s unbiased risk estimate (SURE); magnetic resonance cardiac imaging; singular value thresholding;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2013.2270464
Filename :
6545395
Link To Document :
بازگشت