DocumentCode :
808136
Title :
Zeros of f(z) = (az-b)npm (cz-d)n
Author :
Oraizi, Homayoon
Author_Institution :
Syracuse University, Syracuse, NY, USA
Volume :
17
Issue :
2
fYear :
1972
fDate :
4/1/1972 12:00:00 AM
Firstpage :
259
Lastpage :
261
Abstract :
The zeros of f(z) = (az - b)^{n} \\pm (cz - d)^{n} are found to lie on a circle of radius |(ad - cb)/(|a|^{2} - |c|^{2})| with its center at z = (a^{\\ast }b - c^{\\ast }d)/(|a|^{2} - |c|^{2}) , where a, b, c , and d are complex numbers and n is assumed real. When |a| = |c| the locus of the zeros is a straight line perpendicular to the line joining the points b/a and b/c and intersecting it at z = 0.5(b/a + d/c) . The zeros are found analytically and constructed geometrically.
Keywords :
Polynomials; Convergence; Eigenvalues and eigenfunctions; Multidimensional systems; Newton method; Polynomials; Riccati equations;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1972.1099926
Filename :
1099926
Link To Document :
بازگشت