• DocumentCode
    809019
  • Title

    Efficient evaluation of reaction integrals in the EFIE analysis of planar layered structures with uniaxial anisotropy

  • Author

    Mesa, Francisco ; Plaza, Gonzalo ; Medina, Francisco

  • Author_Institution
    Dept. of Appl. Phys., Seville Univ., Spain
  • Volume
    50
  • Issue
    9
  • fYear
    2002
  • fDate
    9/1/2002 12:00:00 AM
  • Firstpage
    2142
  • Lastpage
    2146
  • Abstract
    This paper presents an efficient implementation of the electric-field integral-equation (EFIE) method to deal with planar anisotropic layered printed structures. A convenient treatment of the kernel of the integral equation gives rise to reaction integrals that only involve quasi-singularities and R-1-type singularities. When the well-known Rao-Wilton-Glisson triangular basis functions are used in conjunction with the Galerkin´s method, closed-form expressions are found for the singular parts of the self-reaction integrals, as well as for the inner convolution integrals of the remaining singular/quasi-singular reaction integrals. Thus, the present procedure sets the EFIE method as a competitive alternative to other formulations
  • Keywords
    Galerkin method; Green´s function methods; anisotropic media; convolution; electric field integral equations; electromagnetic wave scattering; Galerkin´s method; Green´s function; R-1-type singularities; Rao-Wilton-Glisson triangular basis functions; closed-form expressions; electric-field integral-equation method; inner convolution integrals; planar anisotropic layered printed structures; quasi-singularities; reaction integrals; scattering; uniaxial anisotropy; Anisotropic magnetoresistance; Closed-form solution; Conductors; Convolution; Dielectric substrates; Helium; Integral equations; Kernel; Moment methods; Scattering;
  • fLanguage
    English
  • Journal_Title
    Microwave Theory and Techniques, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9480
  • Type

    jour

  • DOI
    10.1109/TMTT.2002.802327
  • Filename
    1028958