DocumentCode
809435
Title
Text mining with information-theoretic clustering
Author
Kogan, Jacob ; Nicholas, Charles ; Volkovich, Vladimir
Author_Institution
Dept. of Math. & Stat., Maryland Univ., Baltimore, MD, USA
Volume
5
Issue
6
fYear
2003
Firstpage
52
Lastpage
59
Abstract
Motivated by the success of hybrid information-retrieval algorithms, the authors report on the development of their hybrid clustering scheme. Scheme experiments on data in a reduced vector space model indicate a higher performance level over several existing clustering algorithms.
Keywords
data mining; information retrieval; pattern clustering; text analysis; hybrid clustering; hybrid information-retrieval algorithms; information-theoretic clustering; text mining; Bioinformatics; Clustering algorithms; Data mining; Information retrieval; Mutual information; Partitioning algorithms; Probability distribution; Random variables; Singular value decomposition; Text mining;
fLanguage
English
Journal_Title
Computing in Science & Engineering
Publisher
ieee
ISSN
1521-9615
Type
jour
DOI
10.1109/MCISE.2003.1238704
Filename
1238704
Link To Document