DocumentCode :
809550
Title :
Equivalent predictions of the circle criterion and an optimum quadratic form for a second-order system
Author :
Tsoi, A. ; Power, H.
Author_Institution :
University of Salford, Salford, England
Volume :
17
Issue :
4
fYear :
1972
fDate :
8/1/1972 12:00:00 AM
Firstpage :
565
Lastpage :
566
Abstract :
It is shown that, for the equation frac{d^{2}u}{dt^{2}} + \\mu frac{du}{dt} + g (t,u,frac{du}{dt}) {u + \\lambda frac{du}{dt}} = 0 , the maximum value of β for which asymptotic stability can be guaranteed with a < g(t, u, du/dt) < \\beta (a \\geq 0) is the same whether derived by the circle criterion or by means of a quadratic Lyapunov function with constant coefficients, and this maximum value is explicitly evaluated.
Keywords :
Asymptotic stability; Circle stability criterion; Lyapunov methods; Nonlinear systems, time-varying; Time-varying systems, nonlinear; Asymptotic stability; Automatic control; Differential equations; Feedback; Functional analysis; Lyapunov method; Nonlinear equations; Stability analysis; Stability criteria; Time varying systems;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1972.1100066
Filename :
1100066
Link To Document :
بازگشت