Title :
Linear convex stochastic optimal control with applications in production planning
Author :
Kleindorfer, Paul ; Glover, Keith
Author_Institution :
Massachusetts Institute of Technology, Cambridge, MA, USA
fDate :
2/1/1973 12:00:00 AM
Abstract :
Linear stochastic systems with convex performance criteria and convex, compact control regions are studied. The admissible control region is assumed to be a continuous function of the (perfectly) observed state. Optimal feedback controls are shown to exist within the class of Borel measurable functions of past states. In fact, they are shown to be continuous functions of the present state. Using dynamic programming the optimal return function is shown to be convex. Asymptotic results for stable systems are derived. These results are then used to explore several problems in aggregate production and work-force planning. Computational aspects of the results in the context of the smoothing problem are discussed.
Keywords :
Linear systems, stochastic discrete-time; Optimal stochastic control; Production planning; Stochastic optimal control; Control systems; Cost function; Dynamic programming; MIMO; Optimal control; Production planning; Space technology; Stability; Stochastic processes; Stochastic systems;
Journal_Title :
Automatic Control, IEEE Transactions on
DOI :
10.1109/TAC.1973.1100203